deepcarskit.data¶
deepcarskit.data.utils¶
- deepcarskit.data.utils.create_dataset(config)¶
Create dataset according to
config['model']
andconfig['MODEL_TYPE']
.- Args:
config (Config): An instance object of Config, used to record parameter information.
- Returns:
Dataset: Constructed dataset.
- deepcarskit.data.utils.create_samplers(config, dataset, built_datasets)¶
Create sampler for training, validation and testing.
- Args:
config (Config): An instance object of Config, used to record parameter information. dataset (Dataset): An instance object of Dataset, which contains all interaction records. built_datasets (list of Dataset): A list of split Dataset, which contains dataset for
training, validation and testing.
- Returns:
- tuple:
train_sampler (AbstractSampler): The sampler for training.
valid_sampler (AbstractSampler): The sampler for validation.
test_sampler (AbstractSampler): The sampler for testing.
- deepcarskit.data.utils.data_preparation(config, dataset, save=False)¶
Split the dataset by
config['eval_args']
and create training, validation and test dataloader.- Args:
config (Config): An instance object of Config, used to record parameter information. dataset (Dataset): An instance object of Dataset, which contains all interaction records. save (bool, optional): If
True
, it will callsave_datasets()
to save split dataset.Defaults to
False
.- Returns:
- tuple:
train_data (AbstractDataLoader): The dataloader for training.
valid_data (AbstractDataLoader): The dataloader for validation.
test_data (AbstractDataLoader): The dataloader for testing.
- deepcarskit.data.utils.get_dataloader(config, phase)¶
Return a dataloader class according to
config
andphase
.- Args:
config (Config): An instance object of Config, used to record parameter information. phase (str): The stage of dataloader. It can only take two values: ‘train’ or ‘evaluation’.
- Returns:
type: The dataloader class that meets the requirements in
config
andphase
.
- deepcarskit.data.utils.get_used_ids(config, dataset)¶
- Returns:
dict: Used item_ids is the same as positive item_ids. Key is phase, and value is a numpy.ndarray which index is user_id, and element is a set of item_ids.
- deepcarskit.data.utils.load_split_dataloaders(saved_dataloaders_file)¶
Load split dataloaders.
- Args:
saved_dataloaders_file (str): The path of split dataloaders.
- Returns:
dataloaders (tuple of AbstractDataLoader): The split dataloaders.
- deepcarskit.data.utils.save_split_dataloaders(config, dataloaders)¶
Save split dataloaders.
- Args:
config (Config): An instance object of Config, used to record parameter information. dataloaders (tuple of AbstractDataLoader): The split dataloaders.
- deepcarskit.data.create_dataset(config)¶
Create dataset according to
config['model']
andconfig['MODEL_TYPE']
.- Args:
config (Config): An instance object of Config, used to record parameter information.
- Returns:
Dataset: Constructed dataset.
- deepcarskit.data.data_preparation(config, dataset, save=False)¶
Split the dataset by
config['eval_args']
and create training, validation and test dataloader.- Args:
config (Config): An instance object of Config, used to record parameter information. dataset (Dataset): An instance object of Dataset, which contains all interaction records. save (bool, optional): If
True
, it will callsave_datasets()
to save split dataset.Defaults to
False
.- Returns:
- tuple:
train_data (AbstractDataLoader): The dataloader for training.
valid_data (AbstractDataLoader): The dataloader for validation.
test_data (AbstractDataLoader): The dataloader for testing.
- deepcarskit.data.load_split_dataloaders(saved_dataloaders_file)¶
Load split dataloaders.
- Args:
saved_dataloaders_file (str): The path of split dataloaders.
- Returns:
dataloaders (tuple of AbstractDataLoader): The split dataloaders.
- deepcarskit.data.save_split_dataloaders(config, dataloaders)¶
Save split dataloaders.
- Args:
config (Config): An instance object of Config, used to record parameter information. dataloaders (tuple of AbstractDataLoader): The split dataloaders.